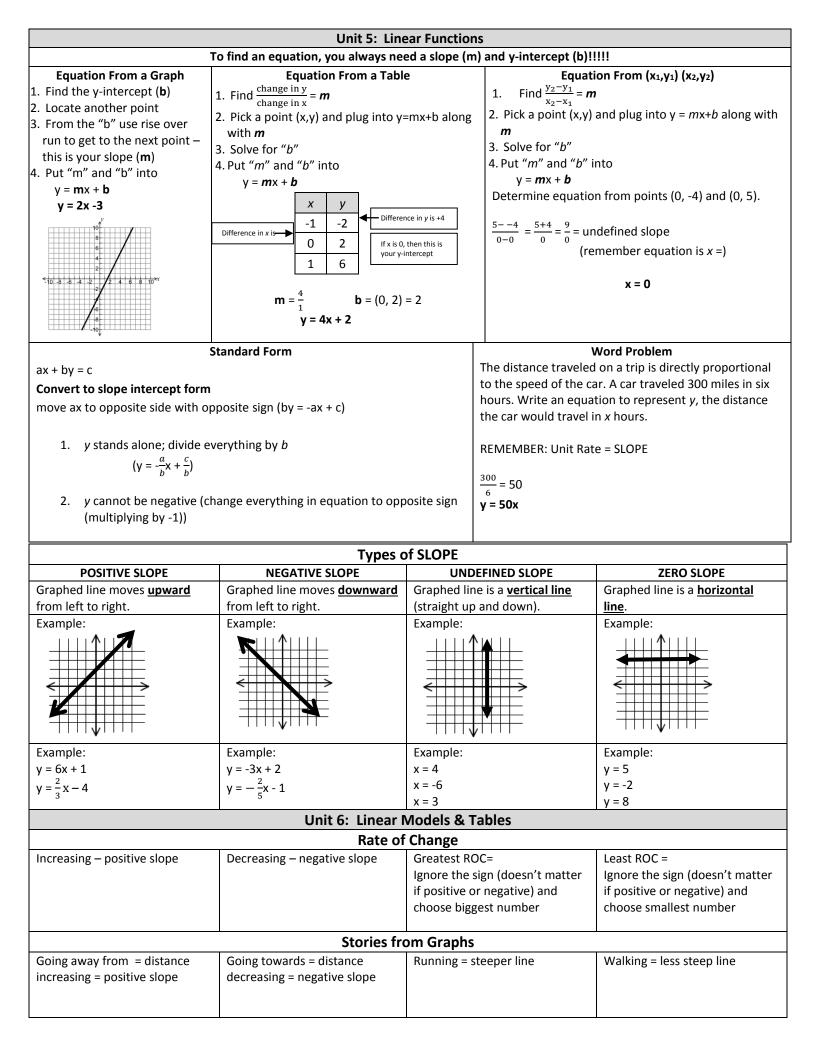
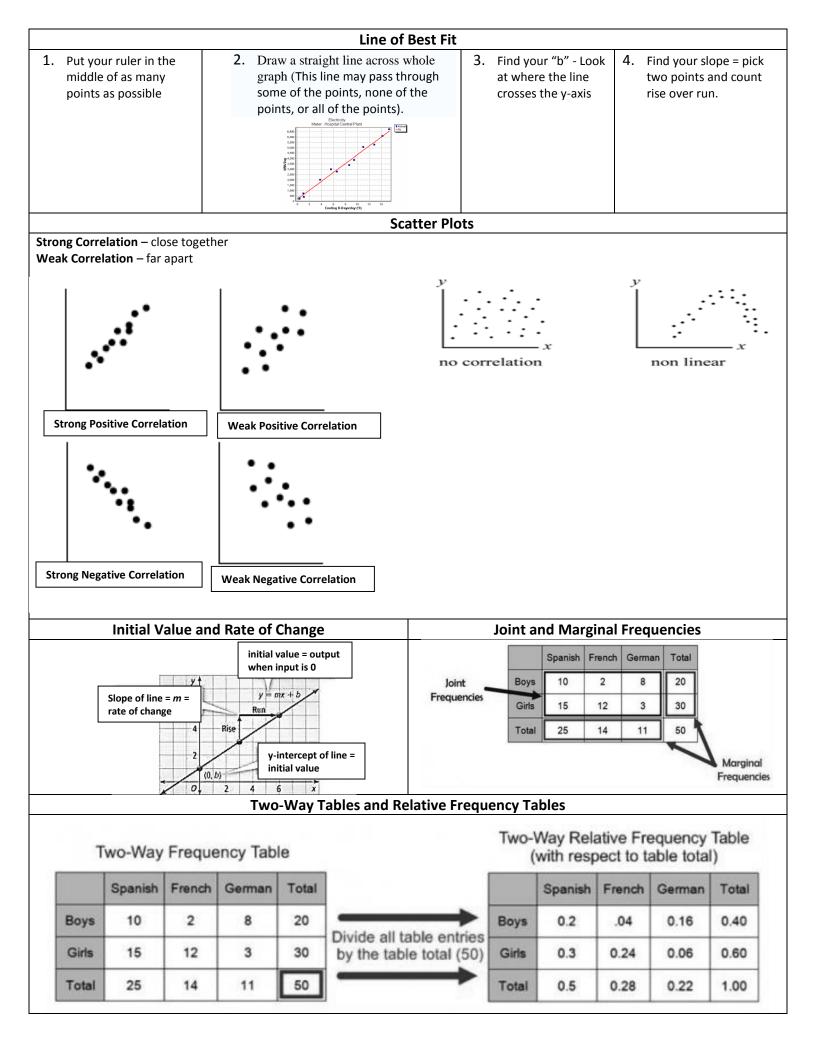
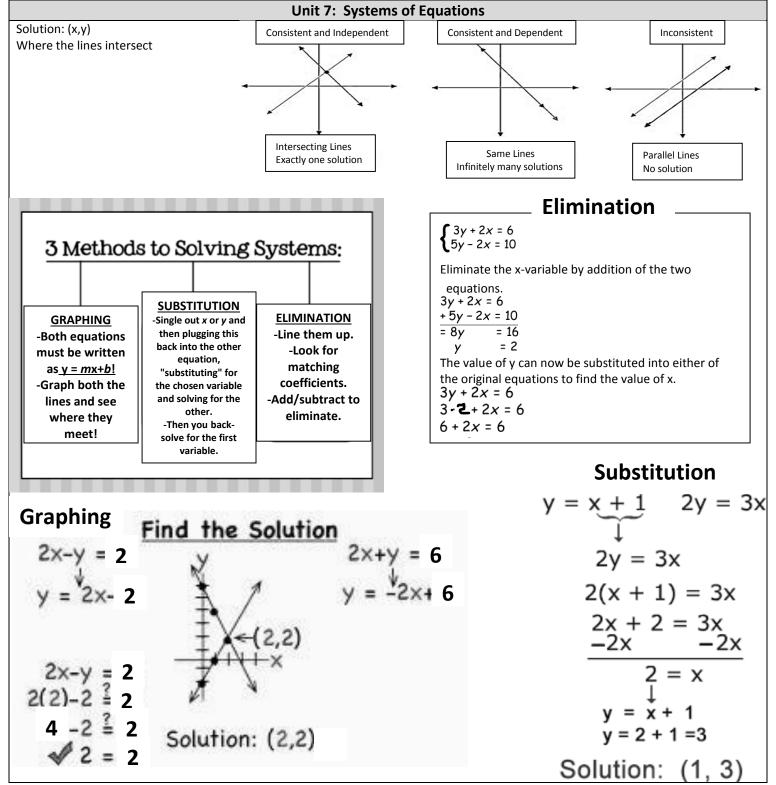

Math 8 Georgia Milestones Review Sheet




		Angles			
		Relationships	Measure	Measurements	
$\leftarrow 1$ 3 \leftarrow	$\begin{array}{c}2\\\hline 4\\5\\\hline 6\\8\\\hline 7\\\hline \end{array}$	Alternate Interior $\angle 3 \& \angle 6$ Alternate Exterior $\angle 2 \& \angle 8$ Consecutive Interior $\angle 4 \& \angle 6$ Corresponding $\angle 1 \& \angle 5$ Vertical $\angle 2 \& \angle 3$ Adjacent $\angle 7 \& \angle 8$	$\begin{array}{c} & 1 & 2 \\ & 3 & 4 \\ \hline & 5 & 6 \\ \hline & 125^{\circ} & 7 \end{array}$	m ∠ 1 = 55° m ∠ 2 = 125° m ∠ 3 = 125° m ∠ 4 = 55° m ∠ 5 = 55° m ∠ 6 = 125° m ∠ 7 = 55°	
Supplementary angles = 180° Complementary angles = 90° Linear Pair: Two angles that are adjacent (share a leg) and supplementary (add up to 180°)		 Corresponding angles = on the same side the transversal (one angle is an interior an one is an exterior) Vertical angles are opposite of each other and have the same measurement; are congruent (≅) 	nd opposite each other and inside two parallel lines which are cut by a	Alternate exterior angles are opposite each other and outside two parallel lines which are cut by a transversal; have the same measurement; are congruent(≅)	
100 /		Unit 2: Exponents and	l Equations		
Estimat	ing Radicals:	Scientific Notation:	Multiplying:	Dividing:	
 Draw a number line Find the closest perfect squares – one smaller and one larger Eliminate answer choices 		 3,420,000 = 3.42 x 10⁶ .00000000986 = 9.86 x 10⁹ 1. Place decimal behind first non 0 number 2. Multiply by 10 3. Count spaces new to old (exponent) Left negative and right = positive 	(2.3 x 10 ⁵) (1.4 x 10 ²) 1) 2.3 x 1.4 = 3.22 2) 10 ⁵ x 10 ² = 10 ⁷ 3) 3.22 x 10 ⁷	$(6 \times 10^{8}) \div (2 \times 10^{2})$ 1) $6 \div 2 = 3$ 2) $10^{8} \div 10^{2} = 10^{6}$ 3) 3×10^{6}	
		Square Roots			
Know perfect 25.	t square roots to	Know perfect cube roots to 10.	Know:	Know:	
$1^{2} = 1$ $3^{2} = 9$ $5^{2} = 25$ $7^{2} = 49$ $9^{2} = 81$ $11^{2} = 121$ $13^{2} = 169$ $15^{2} = 225$ $17^{2} = 289$ $19^{2} = 361$ $21^{2} = 441$ $23^{2} = 529$ $25^{2} = 625$	$2^{2} = 4$ $4^{2} = 16$ $6^{2} = 36$ $8^{2} = 64$ $10^{2} = 100$ $12^{2} = 144$ $14^{2} = 196$ $16^{2} = 256$ $18^{2} = 324$ $20^{2} = 400$ $22^{2} = 484$ $24^{2} = 576$	$1^3 = 1$ $\sqrt[3]{1} = 1$ $2^3 = 8$ $\sqrt[3]{8} = 2$ $3^3 = 27$ $\sqrt[3]{27} = 3$ $4^3 = 64$ $\sqrt[3]{64} = 4$ $5^3 = 125$ $\sqrt[3]{125} = 5$ $6^3 = 216$ $\sqrt[3]{216} = 6$ $7^3 = 343$ $\sqrt[3]{343} = 7$ $8^3 = 512$ $\sqrt[3]{512} = 8$ $9^3 = 729$ $\sqrt[3]{729} = 9$ $10^3 = 1000$ $\sqrt[3]{1000} = 10$	$\sqrt{0} = 0$ $\sqrt{-} = radical$	$1^{0} = 1$ $55^{0} = 1$ $100^{0} = 1$ Anything to the raised to the zero power is one.	
		Rational and Irrationa			
The numerate	hat can be express or and the denomi	Rational Numbers and as a fraction or ratio. nator of the fraction are both integers. t, it becomes a terminating or repeating	Cannot be expressed as a frac	Irrational Numbers Cannot be expressed as a fraction. Irrational numbers cannot be represented as terminating or repeating decimals.	
decimal. Examples:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Irrational numbers are non-te decimals.	Irrational numbers are non-terminating, non-repeating decimals.	
2/3 0.25 ½ 0.666			Example: $\pi_{= 3.141592654}$ $\sqrt{2}= 1.414213562$ 0.1211211121112	$\pi_{=3.141592654}$ $\sqrt{2}=1.414213562$	

	Exponent Rules – must have	ve the same ba	se!! Keep the base!!		
Multiplying: add exponents 4 ² x 4 ⁶ = 4 ⁸	Dividing: subtract exponents $\frac{6^8}{6^5} = 6^3$		Power to a Power: multiply exponents (3 ⁵) ² = 3 ¹⁰	Negatives: flip to become positive $2^{-6} = \frac{1}{2^6}$	
				**Does not apply to scientific notation	
	-	Properties			
Commutative Property of Addition Changing the <i>order</i> of the addends does not change the sum.	Associative Property of A Changing the grouping of does not change the sum.	the addends	Identity Property of Addition The sum of zero and a number is that number.	Zero Property of Multiplication The product of zero and	
a + b = b + a 5 + 9 = 9 + 5 Think. "order"	(a + b) + c = a + (b + c) (1 + 4) + 7 = 1 + (4 + 7)	Think "grouping"	a + 0 = a 0 + a = a	a number is zero.	
14 = 14	5 + 7 = 1 + 11 12 = 12		89 + 0 = 89 0 + 89 = 89	$0 \times a = 0$ a x 0 = 0 Think "0 product"	
Commutative Property of Multiplication Changing the <i>order</i> of the factors does not change the product.	Changing the grouping of t	anging the <i>grouping</i> of the factors near the <i>grouping</i> of the factors ness not change the product.		0 x 33 = 0 33 x 0 = 0	
a x b = b x a 3 x 8 = 8 x 3 24 = 24	$(6 \times 5) \times 2 = 6 \times (5 \times 2)$ 30 x 2 = 6 x 10		1 x a = a a x 1 = a		
24 - 24	60 = 60		1 x 8 = 8 8 x 1 = 8		
Order of Operations	Inverse Property of Adding the opposite (ad		Inverse Property of Multiplication	Distributive Property Multiply a sum by	
Step 1: Complete the operation inside of the parentheses first.	of a number to the num you a sum zero.		If you multiply a number by its reciprocal (multiplicative inverse) the product is 1.	multiplying each addend separately and then add the products.	
Step 2: Complete any exponents. Step 3: Multiply & Divide IN ORD	Example:		Example:	5(x + 2) = 5(x) + 5(2)	
from LEFT to RIGHT.	(-a) + a = 0		a x 1/a = 1 1/a x a = 1	= 5x + 10	
Step 4: Add & Subtract IN ORDER from LEFT to RIGHT.	$\begin{array}{c} 14 + (-14) = 0\\ (-14) + 14 = 0 \end{array}$	14 + (-14) = 0 (-14) + 14 = 0		**Can NOT combine unlike terms	
Example:			1/9 x 9 = 1 Like terms	Unlike Terms	
48 ÷ 8 + 6(4 + 2) - 15			Terms whose variables (and their <u>exponents</u> such as the	Example:	
Step 1: 6(4 + 2) = 6(6) = 36 Next Line: 48 ÷ 8 + 36 - 15			in x ²) are the same. In other words, terms that are "like"	these are all unlike	
Step 2: 48 ÷ 8 = 6 Next Line: 6 + 36 - 15 Step 3: 6 + 36 = 42			each other. Example:	terms (xy, y and y ² are all different)	
Next Line: 42 - 15 = 27			7x x -2x Are all like terms because the variables are all x		
Expressions		Equations		quations	
An expression is a mathematical "phrase" that stands for a single number. An equation consists of two	"sentence" that says the are equal.	An equation is a mathematical "sentence" that says that two things are equal. An expression is never true or false,		Solving a Linear Equation : Get the variable you are solving for alone on one side and everything else on the other side using INVERSE operations. Example:	
expressions connected by an equision.	uals but just has a numerica		x-5=2	$5x = 7 \qquad \frac{x}{2} = 5$ $5x = \frac{7}{2} \qquad \frac{x}{2} = 5$	
It can only be true or false.	Example: Ten is five less than a nu	umber.	X - 7	$\frac{5x}{5} = \frac{7}{5}$ (2) $\frac{x}{2} = (2)5$	
Example: a number less than five 5 - x	10 = x – 5 A number is less than fi	ve.	y + 4 = -7 y + 4 - 4 = -7 - 4	$x = \frac{7}{5}$ $x = 10$	
five less than a number x – 5	x < 5		y = -11	-	



Variables

Variables can be classified as categorical (aka, qualitative) or quantitative (aka, numerical).

- Categorical. Categorical variables take on values that are names or labels. The color of a ball (e.g., red, green, blue) or the breed
 of a dog (e.g., collie, shepherd, terrier) would be examples of categorical variables.
- Quantitative. Quantitative variables are numerical. They represent a measurable quantity. For example, when we speak of the population of a city, we are talking about the number of people in the city a measurable attribute of the city. Therefore, population would be a quantitative variable
- An outlier is an observation that lies outside the overall pattern of a distribution. Usually, the presence of an outlier indicates some sort of problem. This can be a case which does not fit the model under study, or an error in measurement.

